Pages

Stats Of My Blog

Blog translator

Blogroll

Thursday, August 30, 2012

Foods for Improving Brain Memory





With the increasing popularity of personal computers, people become more and more dependent on computer and their own brain functions recede such as decreased memory. Some foods in daily life could promote the operation of brain, develop intellectual intelligence, and thus enhancing memory.

Milk : Milk is almost perfect for the brain, because it contains various amino acids required for brain and vitamin B1 which is beneficial to nerve cells. Drinking milk before going to bed is very conducive to sleep, which can relieve memory loss and other issues caused by insomnia.

Eggs : Studies have shown that brain activity and memory function are closely related with acetylcholine content in the brain. The egg yolk is rich in lecithin, and it can produce large amount of acetylcholine after decomposition and rapidly increase acetylcholine content in brain tissue, thereby protecting the brain and improve memory.

Fish : High quality protein and calcium are essential nutrients for the brain, and unsaturated fatty acids contained in freshwater fish could protect blood vessels and promote the development of brain cells.

Peanut : Peanut is rich in lecithin and cephalin, which are important materials to compose brain nerve system and they can improve blood circulation and slow brain function decline.

Garlic : Vitamin B1 is very useful for brain cells, and garlic can enhance that function. Garlic and vitamin B1 can produce garlic amine, whose functions are much stronger than vitamin B1.

Walnut and Sesame Seeds : Both of these two foods contain a lot of unsaturated fatty acids. So it could supply adequate linoleic acid, linolenic acid and other unsaturated fatty acid molecules to brain; it helps to clear the impurities in blood and improve brain function to enhance memory. Among them, the rich vitamins in walnut are very effective in the treatment of neurasthenia, insomnia and memory loss.

There are some tips for improving Memory :  

  • People should not rely on computers too much and try to solve problems by themselves.
  • We should do exercise to stimulate the blood circulation of whole body and supply enough blood to brain.
  • We have to do some training to use your brain more frequently and effectively and improve your logic ability.

India is ready for testing First ICBM Missile Agni-V (5000 Km)





India has begun final preparations for the first test of its most-ambitious strategic missile, the 5,000-km Agni-V, which will prove to be a technical as well as logistical challenge. The Agni-V, which will bring the whole of Asia, 70% of Europe and other regions under its strike envelope, will be tested from Wheeler Island off the Orissa coast towards end-March to early-April, defence sources said. The nuclear-capable Agni-V, about 50-tonne in weight and 17.5-m tall, is bound to generate waves. Once the three-stage missile becomes operational by 2014-15 after “four to five repeatable tests”, as promised by DRDO, India will break into the exclusive ICBM (Intercontinental Ballistic Missile) club that counts just US, Russia, China, France and UK as its members. India could have gone for a higher strike range but believes the solid-fuelled Agni-V is “more than adequate’’ to meet current threat perceptions and security concerns. The missile can, after all, even hit the northernmost parts of China. With a canister-launch system to impart higher road mobility, the missile will give the armed forces much greater operational flexibility than the earlier-generation of Agni missiles. “The accuracy levels of Agni-V and the 3,500-km Agni-IV (first tested in November 2011), with their better guidance and navigation systems, are far higher than Agni-I (700-km), Agni-II (2,000-km) and Agni-III (3,000-km),’’ said the source.

Researchers "Grow" New Blood Vessels




Synthetic blood vessels that can be made in advance and stored until surgery could help patients undergoing heart surgery, hemodialysis—cleansing of the blood in cases of kidney failure—and other procedures. Laura Niklason, an anesthesiologist and biomedical engineer at Yale University, and her collaborators have grown blood vessels using human cells and tested them in baboons, showing that they provoke no immune rejection and avoid common complications of synthetic vessels, such as clotting, bursting, or contracting over time. Researchers hope these studies will show that the vessels are safe enough to win permission from the U.S. Food and Drug Administration to begin clinical trials.

During bypass surgery, doctors looking to circumvent blocked arteries usually harvest vessels from a patient's leg or arm. But people who suffer from vascular disease or who have had previous procedures may have no suitable vessels left. The other options have complications: grafts from donors are often rejected by the recipient's immune system, artificial plastic vessels have high rates of blood clots and other problems, and vessels grown from a patient's own tissue take more than six months to mature. "Artificial grafts suffer from clotting and obstruction because they are not tissue," says Niklason, especially when plastic is used.

Niklason says she has solved this problem by creating vessels that are derived from living tissue but can be used off-the-shelf and are not rejected by the immune system. Using a technique she developed at MIT in the 1990s, researchers seed tubular scaffolds with smooth muscle cells. The cells secrete collagen and other connective tissue molecules around the scaffolds, forming blood vessels. After the scaffolds break down, the vessels are washed with a detergent that strips away the cells, leaving behind the fibrous tubes of collagen.

Because the tubes contain no living cells, they do not trigger an immune response and have a shelf life of more than a year. The group has previously grown vessels using cells from several different animal species, including canine versions for heart bypass surgeries in dogs.

Now, in a report published in Science Translational Medicine, the researchers have grown vessels using human cells for the first time. They used the vessels to link an artery and a vein in baboons, creating a structure called a fistula to mimic the setup required by hemodialysis patients, who have a needle injected into such a link two or three times a week to get their blood filtered. Also, while previous versions of the vessels required a wait of several weeks while the insides of the vessels were "personalized" with some of the patient's own cells, a process that makes them less likely to clog, these hemodialysis vessels did not need that treatment.

"That means they could potentially be immediately available to the patient," says Shannon Dahl, a biomedical engineer who cofounded a biotechnology company called Humacyte with Niklason and another colleague to help bring the technology to market. Humacyte initially plans to test its technology in hemodialysis patients, though Dahl declined to give a timeline for clinical trials.

Researchers ultimately hope to test the vessels for heart surgeries, but they first want to show that the technology is safe and effective. "I would love to get to coronary bypass at some point, but we have to prove that this is a good, safe therapy in other anatomical locations first," says Niklason. A hemodialysis graft is much more easily replaced than a bypass graft if there are infections or other problems.

The researchers' use of baboons also provides important additional support before they move into human trials, says David Putnam, a chemical engineer at Cornell University who studies biomaterials. The reason is that the dynamics of blood flow in baboons are a good model for what happens in humans, he says. "They are going about this very well, very carefully. They're building a house with very strong bricks," he says. "And the next step is humans."

The Biggest Stars In The Universe




VY Canis Majoris (VY CMa) is a red hypergiant star located in the constellation Canis Major. With a size of 2600 solar radii, it is the largest known star and also one of the most luminous known. It is located about 1.5 kiloparsecs (4.6×1016 km) or about 4,900 light years away from Earth. Unlike most stars, which occur in either binary or multiple star systems, VY CMa is a single star. It is categorized as a semiregular variable and has an estimated period of 6,275,081 days, or just under 17,200 years. 

Antares is a red supergiant star in the Milky Way galaxy and the sixteenth brightest star in the nighttime sky (sometimes listed as fifteenth brightest, if the two brighter components of the Capella quadruple star system are counted as one star). Along with Aldebaran, Spica, and Regulus it is one of the four brightest stars near the ecliptic. Antares is a variable star, whose apparent magnitude varies from +0.9 to +1.8. 

The Pistol Star is a blue hypergiant and is one of the most luminous known stars in the Milky Way Galaxy. It is one of many massive young stars in the Quintuplet cluster in the Galactic Center region. The star owes its name to the shape of the Pistol Nebula, which it illuminates. It is located approximately 25,000 light years from Earth in the direction of Sagittarius. It would be visible to the naked eye as a fourth magnitude star, if it were not for the interstellar dust that completely hides it from view in visible light. 

Rigel (β Ori / β Orionis / Beta Orionis) is the brightest star in the constellation Orion and the sixth brightest star in the sky, with visual magnitude 0.18. Although it has the Bayer designation "beta", it is almost always brighter than Alpha Orionis (Betelgeuse). 

Aldebaran (α Tau, α Tauri, Alpha Tauri) is an orange giant star located about 65 light years away in the zodiac constellation of Taurus. With an average apparent magnitude of 0.87 it is the brightest star in the constellation and is one of the brightest stars in the nighttime sky. The name Aldebaran is Arabic (الدبران al-dabarān) and translates literally as "the follower", presumably because this bright star appears to follow the Pleiades, or Seven Sisters star cluster in the night sky. This star is also called the Bull's Eye because of its striking orange color and its location in the bull's head shaped asterism. NASA's Pioneer 10 spacecraft, which flew by Jupiter in 1973, is currently traveling in the direction and will reach it in about two million years. 

Arcturus (α Boo / α Boötis / Alpha Boötis) is the brightest star in the constellation Boötes. With a visual magnitude of −0.05, it is also the third brightest star in the night sky, after Sirius and Canopus. It is, however, fainter than the combined light of the two main components of Alpha Centauri, which are too close together for the eye to resolve as separate sources of light, making Arcturus appear to be the fourth brightest. It is the second brightest star visible from northern latitudes and the brightest star in the northern celestial hemisphere. The star is in the Local Interstellar Cloud.

Pollux (β Gem / β Geminorum / Beta Geminorum) is an orange giant star approximately 34 light-years from the Earth in the constellation of Gemini (the Twins). Pollux is the brightest star in the constellation, brighter than Castor (Alpha Geminorum). As of 2006, Pollux was confirmed to have an extrasolar planet orbiting it.

Sirius is the brightest star in the night sky. With a visual apparent magnitude of −1.46, it is almost twice as bright as Canopus, the next brightest star. The name Sirius is derived from the Ancient Greek Σείριος. The star has the Bayer designation α Canis Majoris (α CMa, or Alpha Canis Majoris). What the naked eye perceives as a single star is actually a binary star system, consisting of a white main sequence star of spectral type A1V, termed Sirius A, and a faint white dwarf companion of spectral type DA2, termed Sirius B.

The Sun is the star at the center of the Solar System. The Sun has a diameter of about 1,392,000 kilometres (865,000 mi) (about 109 Earths), and by itself accounts for about 99.86% of the Solar System's mass; the remainder consists of the planets (including Earth), asteroids, meteoroids, comets, and dust in orbit. About three-fourths of the Sun's mass consists of hydrogen, while most of the rest is helium.

Discovery of Penicillin





In 1928, bacteriologist Alexander Fleming made a chance discovery from an already discarded, contaminated Petri dish. A mold had grown on the Petri dish when it was left unattended for a couple of days. And the mold seemed to have killed the Staphylococcus aureus that had been growing in the dish.

How Penicillin was Discovered

Fleming realized that this mold had potential. Fleming spent several weeks growing more mold and trying to determine the particular substance in the mold that killed the bacteria. After discussing the mold with mycologist (mold expert) C. J. La Touche who had his office below Fleming's, they determined the mold to be a Penicillium mold. Fleming then called the active antibacterial agent in the mold, penicillin. So, the mold that had contaminated the experiment turned out to contain a powerful antibiotic, penicillin. But, Could this be the "wonder drug"? To Fleming, it was not. Though he saw its potential, Fleming was not a chemist and thus was unable to isolate the active antibacterial element, penicillin, and could not keep the element active long enough to be used in humans.

More Detail about Penicillin

In 1929, Fleming wrote a paper on his findings, which did not garner any scientific interest. Twelve years later In 1940, the second year of World War II, Australian Howard Florey and German refugee Ernst Chain began working with penicillin. Using new chemical techniques, they were able to produce a brown powder which was safe and kept its antibacterial power for longer than a few days. Needing the new drug immediately for the war front, mass production started quickly. The availability of penicillin during World War II saved many lives that otherwise would have been lost due to bacterial infections in even minor wounds. Penicillin also treated diphtheria, gangrene, pneumonia, syphilis and tuberculosis. Though Fleming discovered penicillin, it took Florey and Chain to make it a usable product. Though both Fleming and Florey were knighted in 1944 and all three of them (Fleming, Florey and Chain) were awarded the 1945 Nobel Prize in Physiology or Medicine, Fleming is still credited for discovering penicillin.

9 Extraordinary Human Abilities

This list of extraordinary human abilities was inspired The Top 10 Tips to Improve Your Memory when I began thinking about how some people are blessed (or cursed, depending on your point of view) with the ability to recall a scene as if they were looking at a photograph. And how other people can recreate music from memory, such as Mozart’s famed reproduction of Gregorio Allegri’s Miserere after one hearing. What other extraordinary abilities might humans have? I’ve listed nine of the most well understood (i.e. not paranormal or ‘fringe science’) and interesting abilities rated from most common to most interesting and rare. Bear in mind that most of these unusual abilities are genetic and cannot be controlled by the person affected but are an inherent quality of their physical self.

9. Supertasters



People who experience taste with greater intensity than the rest of the population are called supertasters. Having extra fungiform papillae (the mushroom shaped bumps on the tongue that are covered in taste buds) is thought to be the reason why these people have a stronger response to the sensation of taste. Of the five types of taste, sweet, salty, bitter, sour, and umami, a supertaster generally finds bitterness to be the most perceptible.
Scientists first noticed the differing abilities of people to taste a known compound when a DuPont chemist called Arthur Fox asked people to taste Phenylthiocarbamide (PTC). Some people could taste its bitterness; some couldn’t – whether people could depended on their genetic make-up (a variant of this test is now one of the most common genetic tests on humans). While about 70% of people can taste PTC, two thirds of them are rated as medium and only one third (approximately 25% of the wider population) are supertasters.
Supertasters will often dislike certain foods, particularly bitter ones, such as brussel sprouts, cabbage, coffee, and grapefruit juice. Women, Asians, and Africans are most likely to have the increased number of fungiform papillae that make them supertasters.

8. Absolute Pitch



People with absolute pitch are capable of identifying and reproducing a tone without needing a known reference. It is not simply a better ability to hear but the ability to mentally class sounds into remembered categories. Examples of this include identifying the pitch of everyday noises (e.g. horns, sirens, and engines), being able to sing a named note without hearing a reference, naming the tones of a chord, or naming the key signature of a song. Doing any of these is a cognitive act – it requires one to remember the frequency of each tone, be able to label it (e.g. ‘A’, ‘C#’, or ‘F-flat’), and sufficient exposure to the range of sound within each label. Opinions vary as to whether absolute pitch is genetic or a learned ability that is strongly influenced to one’s exposure to music at crucial developmental stages – much like how a child’s ability to identify colors by their frequency depends on the type and level of their exposure to it.
Estimates of the portion of the population having absolute pitch range from 3% of the general population in the US and Europe to 8% of those (from the same areas) who are semi-professional or professional musicians. In music conservatories in Japan however, about 70% of musicians have absolute pitch. Part of the reason for this significantly larger percentage may be because absolute pitch is more common among people who grew up in a tonal (Mandarin, Cantonese, and Vietnamese) or pitch accent (Japanese) language environment. Absolute pitch is also more common in those who are blind from birth, have William’s Syndrome, or have an autism spectrum disorder.

7. Tetrachromacy



Tetrachromacy is the ability to see light from four distinct sources. An example of this in the animal kingdom is the zebrafish (Danio rerio), which can see light from the red, green, blue, and ultraviolet sections of the light spectrum. True tetrachromacy in humans is much rarer however – according to Wikipedia only two possible tetrachromats have been identified.
Humans are normally trichromats, having three types of cone cells that receive light from either the red, green, or blue part of the light spectrum. Each cone can pick up about 100 graduations of color and the brain combines colors and graduations so that there are about 1 million distinguishable hues coloring your world. A true tetrachromat with an extra type of cone between red and green (in the orange range) would, theoretically, be able to perceive 100 million colors.
Like supertasting, tetrachromacy is thought to be much more common in women than men – estimates range from 2 – 3% to 50% of women. Interestingly, colour-blindness in men (much more common than in women) may be inherited from women with tetrachromacy.


6. Echolocation

Echolocation is how bats fly around in dark forests – they emit a sound, wait for the echo to return, and use that sound of the echo in each ear plus the return time to work out where an object is and how far away. Surprisingly (well, maybe not on this list!), humans are also capable of using echolocation. Use of echolocation is probably restricted to blind people because it takes a long time to master and heightened sensitivity to reflected sound.
To navigate via echolocation a person actively creates a noise (e.g. tapping a cane or clicking the tongue) and determines from the echoes where objects are located around them. People skilled at this can often tell where an object is, what size it is, and its density. Because humans cannot make or hear the higher pitched frequencies that bats and dolphins use they can only picture objects that are comparatively larger than those ‘seen’ by echolocating animals.
People with the ability to echolocate include James Holman, Daniel Kish, and Ben Underwood. Perhaps the most remarkable and well-documented of cases is the story of Ben Underwood, who lost both his eyes to retinal cancer at the age of three.

5. Genetic Chimerism



In the Iliad Homer described a creature having body parts from different animals, a chimera, from this mythological monster comes the name of the genetic equivalent – chimerism. Genetic chimerism, or tetragametism, in humans and other animals happens when two fertilized eggs or embryos fuse together early in pregnancy. Each zygote carries a copy of its parents DNA and thus a distinct genetic profile. When these merge, each population of cells retains its genetic character and the resulting embryo becomes a mixture of both. Essentially, a human chimera is their own twin.
Chimerism in humans is very rare; Wikipedia states that there are only about 40 reported cases. DNA testing is often used to establish whether a person is biologically related to their parents or children and can uncover cases of chimerism when DNA results show that children are not biologically related to their mothers – because the child inherited a different DNA profile to the one shown by a blood test. This is what happened in the case of Lydia Fairchild: DNA tests of herself and her children led the state to think that she was not actually their mother.
People born with chimerism typically have immune systems that make them tolerant to both genetically distinct populations of cells in their body. This means that a chimera has a much wider array of people to choose from should they need an organ transplant.

4. Synesthesia


Imagine consistently associating numbers or letters with certain colours, or hearing a specific word which triggers a particular sensation of taste on your tongue. These are two forms of a neurological condition called synesthesia. Synesthesia is when stimulation of a particular sensory or cognitive pathway leads to an involuntary (i.e. synesthesia is not learnt) response in other sensory or cognitive pathways.
Synesthesia is most often genetic and the grapheme (letters, numbers, or other symbols) to colour form of synesthesia is the commonest. Other synesthetes can experience special-sequence synesthesia (e.g. where dates have a precise location in space), ordinal linguistic personification (when numbers have personalities), or sound to colour synesthesia (where tones are perceived as colours).
Although synesthesia is a neurological condition it shouldn’t be thought of as a disorder, because generally it does not interfere with a person’s ability to function. Most people are not even aware that their experiences of life elicit more sensory responses than other peoples might and the ones that are rarely consider synesthesia to have a negative impact on their lives.
Predictions of the percentage of people with synesthesia vary widely, from 1 in 20 to 1 in 20,000. Studies from 2005 and 2006, using a random population sample, suggested 1 in about 23 people have synesthesia. Examples of people with synesthesia include the author Vladimir Nabokov, composer Olivier Messiaen, and scientist Richard Feynman. Daniel Tammet, who is mentioned in the next section of this list, is a synesthete (in addition to being a mental calculator) who sees numbers with shapes and texture.

3. Mental Calculators

The most extraordinary group of people adept at performing complex mental calculations is those who are also autistic savants. While there are many trained people who can work out multiplications of large numbers (among other calculations) in their head extremely fast – mostly mathematicians, writers, and linguists – the untrained ability of autistic savants is the most interesting. The majority of these people are born with savant syndrome (only an estimated 50% of people with savantism are also autistic), which is still poorly understood, few develop it later in life, usually due to a head injury.
There are less than 100 recognised prodigious savants in the world and of the savants with autism who are capable of using mental calculation techniques there are even less. Recent research has suggested that a blood flow to the part of the brain responsible for mathematical calculations of six to seven times the normal rate is one of the factors that enables mental calculators to work out math much faster than the average person.
Examples of people with extraordinary calculation skills include Daniel McCartney, Salo Finkelstein, and Alexander Aitken. Daniel Tammet is one of few who are also autistic savants.

2. Eidetic Memory

When a person has photographic memory or total recall this is called eidetic memory. It is the ability to recall sounds, images, or objects from one’s memory with extreme accuracy. Examples of eidetic memory include the effort of Akira Haraguchi who recited from memory the first 100,000 decimal places of pi and the drawings of Stephen Wiltshire (who is also an autistic savant) – his recreation of Rome is shown in the video above. Kim Peek, the inspiration for the autistic (Peek is not actually autistic though) character of Raymond Babbit in the movie Rainman, also possesses eidetic memory – among other things he can recall some 12,000 books from memory.
Whether true photographic memory exists in adults is still a controversial issue, but it is accepted that eidetic abilities are distributed evenly between men and women. One also cannot become an eidetiker through practice.

1.  Immortal cells


There is only one known case of a person having immortal cells (cells that can divide indefinitely outside of the human body, defying the Hayflick Limit) and that is of a woman named Henrietta Lacks. In 1951, 31 year old Henrietta Lacks was diagnosed with cervical cancer, which she died from within the year. Unknown to her and her family (i.e. without informed consent) a surgeon took a tissue sample from her tumor that was passed on to a Dr. George Gey. A scientist for the John Hopkins University Tissue Culture Laboratory, Gey propagated Lacks’ tissue sample into an immortal cell line – the HeLa cell line (pictured above). The cells from Lacks’ tumour have an active version of the telomerase enzyme (telomerase is the mechanism by which cells age or are aged) and proliferate abnormally fast. On the day of Henrietta Lacks’ death, Dr. Gey announced to the world that a new age in medical research had begun – one that might provide a cure for cancer.
HeLa cells were utilised in 1954 by Jonas Salk to develop the cure for polio. Since then they’ve been used in researching cancer, AIDS, the effects of radiation and toxic substances, and for mapping genes, among other things.
Today, the HeLa cells are so common in laboratories that they contaminate many other cell cultures and have rendered some biological studies invalid through their presence. There are also more HeLa cells alive today than when Henrietta Lacks was alive – they outweigh her physical mass by many times. Tragically, Lacks was never told of the immensely valuable contribution her cells made to science and her family was not informed until many years later that her cells were being used for research purposes (a 1990 court ruling later verified Lacks’ hospital as the owner of her discarded tissue and cells).

Hitachi Surprises with 7mm 7200RPM 320GB HDD





There are many ways that a new storage solution can cause jaws to be inadvertently dropped. Usually, it is because the read and/or write speed is spectacular, or because some new feature or another is supported. Other times, a device would stand out through being the first of its kind, as it happened with the first SSDs and, later, with the first PCI Express solid state drives. It appears, however, that there might be another way of turning heads.


Toshiba has combined inventiveness with experience in order to come up with a hard disk drive that stands out through being smaller than all of its peers. To be more specific, the SATA 3.0Gbps Travelstar Z7K320 that the hardware maker presented today, though it uses the same 2.5-inch form factor that all compact HDDs come with, is much thinner than one would expect. In fact, it is so thin that it will probably make its way into most ultrathin laptops slated for release during the later parts of 2010.


The actual thickness if of 7 millimeters, a full 2.5mm less than standard units (9.5mm). The performance, on the other hand, doesn't seem to have suffered the same shrinkage effect. The platter still manages to maintain a rotary speed of 7,200RPM (rotations per minute) and, backed by 16MB cache, the maximum transfer rate still gets as high as 1,334Mbps. This is quite significant, especially considering the power draw (1.8 Watts during read/write and 0.8 watts during standby).

As for noise hazards, the humming produced by the storage solution shouldn't go over 23dB when idle and 24dB when seeking. August is the earliest one can expect to see this product, as well a 5,400RPM version, being mass produced, which means that super-thin notebooks will start to show up soon after.

“As a leading personal computing company, we are constantly evaluating and offering new designs and technologies that make computing more enjoyable and affordable for our customers," said Wentao Yang, vice president, Global Procurement, Lenovo Group. "Hitachi's 7mm product family represents important advancements for the industry. We look forward to continuing our relationship with Hitachi and working together to innovate and take the computing landscape to newer smaller heights.
 

Sample text

Sample Text

Hello friends i m u'r entitainer riyadh thiz time i've started an article blog so dont for get to read it...!have funn{{{IT'Z FUN TO BE YOUNG}}}

Sample Text